On convex combinations of Blaschke products
نویسندگان
چکیده
منابع مشابه
Blaschke- and Minkowski-endomorphisms of Convex Bodies
We consider maps of the family of convex bodies in Euclidean ddimensional space into itself that are compatible with certain structures on this family: A Minkowski-endomorphism is a continuous, Minkowski-additive map that commutes with rotations. For d ≥ 3, a representation theorem for such maps is given, showing that they are mixtures of certain prototypes. These prototypes are obtained by app...
متن کاملComputable Analysis and Blaschke Products
We show that if a Blaschke product defines a computable function, then it has a computable sequence of zeros in which the number of times each zero is repeated is its multiplicity. We then show that the converse is not true. We finally show that every computable, radial, interpolating sequence yields a computable Blaschke product.
متن کاملConvex combinations of harmonic shears of slit mappings
In this paper, we study the convex combinations of harmonic mappings obtained by shearing a class of slit conformal mappings. Sufficient conditions for the convex combinations of harmonic mappings of this family to be univalent and convex in the horizontal direction are derived. Several examples of univalent harmonic mappings constructed by using these methods are presented to illustrate...
متن کاملBoundary Interpolation by Finite Blaschke Products
Given 2n distinct points z1, z′ 1, z2, z ′ 2, . . . , zn, z ′ n (in this order) on the unit circle, and n points w1, . . . , wn on the unit circle, we show how to construct a Blaschke product B of degree n such that B(zj) = wj for all j and, in addition, B(z′ j) = B(z ′ k) for all j and k. Modifying this example yields a Blaschke product of degree n− 1 that interpolates the zj ’s to the wj ’s. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1967
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1967-0211271-x